Сторона основания правильной треугольной пирамиды равна 4√3 см, а высота 7 см. Найти площадь сечения пирамиды, если оно проходит через её высоту и боковое ребро.
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
Примем длину ребра 4. Тогда АК = 1. Найдём длину отрезка ВК по теореме косинусов: ВК = √(1²+4²-2*1*4*cos60°) = √(1+16-2*1*4*0.5) = √13. Проведём высоту основания ВТ. Она равна 4*cos30° = 4*(√3/2) = 2√3. Для получения линейного угла между прямой МО и плоскостью МВК проведём секущую плоскость через МО перпендикулярно ВК. В основании получим прямую, пересекающую ВК в точке Е. Треугольник КВТ подобен треугольнику ОЕВ по прямому и общему углу КВТ. Синус угла КВТ (назовём его β) равен: sin β = KT/BK = 1/(√13). Отрезок ОВ = (2/3)*(2√3) = 4√3/3. ОЕ = ОВ*sin β = (4√3/3))*(1/(√13)) = 4√3/(3√13) ≈ 0,640513. Высота Н правильного тетраэдра равна а*√(2/3), где а - ребро. Н = 4*√(2/3) = 4√2/√3. Искомый угол МЕО равен: <MEO = arc tg(MO/OE) = arc tg(4√2/√3)/(4√3/(3√13)) = arc tg√13 = = arc tg 3.605551 = 1,300247 радиан = 74,49864°.
21 см²
Объяснение:
Решение на фото.......