Так как все стороны у нас равны, то из этого следует, что треугольник правильный, а как известно, что у правильного треугольника все углы равны (его еще называют равноугольным треугольником). Так как сумма всех сторон треугольника = 180°, то 180°/ 3 = 60°
BD - диагональ основания, равная по Пифагору √(8²+6²)=10см. Плоскость сечения - треугольник BDC1, площадь которого равна S=(1/2)*BD*С1Н, где С1Н - высота сечения - перпендикуляр к прямой BD. Угол между плоскостями сечения и основания - это угол С1НС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". С1Н - перпендикулярна линии пересечения BD по построению, СН - перпендикулярен BD по теореме о трех перпендикулярах. Итак, <C1HC=60° (дано), <CC1H = 30° (по сумме острых углов прямоугольного треугольника) Отрезок СН - это высота треугольника ВСD из его прямого угла и по свойству этой высоты равен СН=ВС*СD/BD=6*8/10=4,8см. Тогда С1Н = 2*СН = 9,6см (как гипотенуза и катет против угла 30°). Площадь сечения равна S=(1/2)*BD*C1H = 5*9,6 = 48см².
BD - диагональ основания, равная по Пифагору √(8²+6²)=10см. Плоскость сечения - треугольник BDC1, площадь которого равна S=(1/2)*BD*С1Н, где С1Н - высота сечения - перпендикуляр к прямой BD. Угол между плоскостями сечения и основания - это угол С1НС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". С1Н - перпендикулярна линии пересечения BD по построению, СН - перпендикулярен BD по теореме о трех перпендикулярах. Итак, <C1HC=60° (дано), <CC1H = 30° (по сумме острых углов прямоугольного треугольника) Отрезок СН - это высота треугольника ВСD из его прямого угла и по свойству этой высоты равен СН=ВС*СD/BD=6*8/10=4,8см. Тогда С1Н = 2*СН = 9,6см (как гипотенуза и катет против угла 30°). Площадь сечения равна S=(1/2)*BD*C1H = 5*9,6 = 48см².
∠А = 60°
Объяснение:
Первым делом найдем длину вектора каждой стороны;
1) AB² = (9-2)² + (10-3)² + (-5 + 5)² = 98
AB =
2) AC² = (9-2)² + (3-3)² + (2 + 5)² = 98
AC =
3) BC² = (2-2)² + (10-3)² + (2 + 5)² = 98
BC =
Так как все стороны у нас равны, то из этого следует, что треугольник правильный, а как известно, что у правильного треугольника все углы равны (его еще называют равноугольным треугольником). Так как сумма всех сторон треугольника = 180°, то 180°/ 3 = 60°