АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd. В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС). Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных). Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB. Что и требовалось доказать.
Один из углов ромба на 120° больше другого, а сторона ромба равна 6√3. Найдите площадь этого ромба.
— — —
Дано:Четырёхугольник ABCD — ромб.
АВ = 6√3.
<АВС = <BAD+120°.
Найти:S(ABCD) = ?
Решение:Пусть <BAD = х, тогда <АВС = х+120°.
[Сумма соседних углов параллелограмма равна 180°].
То есть —
<ВAD+<ABC = 180°
х+х+120° = 180°
2х = 180°-120°
2х = 60°
х = 30°.
<BAD = 30°.
[У ромба равны все стороны].
То есть —
АВ = ВС = CD = AD = 6√3.
[Площадь параллелограмма равна произведению сторон и синуса угла между ними].
То есть —
S(ABCD) = sin(<BAD)*AB*AD
S(ABCD) = sin(30°)*6√3*6√3
S(ABCD) = 0,5*36*3
S(ABCD) = 54 (ед²).
ответ:а) 54.