в прямоугольной пирамиде ABCS сторона основания AB=6 угол наклона бокового ребра к основанию arccos 1/3 высота SO делистя в отношении SF/OF=3 найдите площадь сечения стороной основания AB и точкой F
1)Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
Объяснение:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.
А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
Доказательство:
Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти два треугольника буду равны между собой по трем сторонам (BD - общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.
3)Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.
Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.
Удаленное решение пользователя TwilightStar2016 верное, за исключением досадной описки в конце. Вот оно: Решение. 1)MN-касат. OE-r-следовательно <MEK=90º=>KE-высота, медиана, биссектриса. КЕ-медиана=>МЕ=ЕN=20:2=10 2)OD-r MK-касат=><KDO=90º 3)Рассмотрим треу. MEK и DOK. <MEK-общий, <KDO=<MEK=>треу. MEK ~ DOK.(по двум углам) 4)MN и MK-касат.,MD-10=>ME=MD (по двум касат.) DK=MK-MD=26-10=16см. 5) треу. MKE-прямоуг. MK^2=ME^2+EK^2(теорема Пифагора. ) EK=корень ME^2-MK^2=корень из 676-100=корень из 576=24. 6)Отношение. 10/OD=24/16=26/OK 24/16=26/OK 24×OK=16×26 24OK=416 OK=416:21 OK=17целых1/3 OE=EK-OK=24-17целых1/3=6целых2/3 (а не 6и1/3, как было в ответе). Можно было решить так: По формуле радиуса вписанной в треугольник окружности: r=S/p, где S - площадь, а "р" - полупериметр треугольника. У нас р=(26+26+20):2 = 36. S=√[p(p-a)((p-b)(p-c)] - формула Герона. S=√(36*18*18*16)=240. r=240/36=6и2/3. ответ: r=6и2/3.
1)Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
Объяснение:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.
А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
Доказательство:
Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти два треугольника буду равны между собой по трем сторонам (BD - общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.
3)Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.
Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.
Подробнее - на -