М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Torior
Torior
22.04.2023 04:44 •  Геометрия

В параллелограмме ABCD из вершины острого угла A опущены высоты AH и AK на прямые,содержащие стороны BC и CD соответственно. Найдите HK,если AB=5,AC=15,AH=3.

👇
Ответ:
NastyaAngell
NastyaAngell
22.04.2023
Добрый день! Рассмотрим задачу по шагам:

1. В параллелограмме ABCD из вершины острого угла A опущены высоты AH и AK. Из этого следует, что прямые AH и AK перпендикулярны сторонам BC и CD соответственно.

2. Так как параллелограмм ABCD является фигурой, у которой противоположные стороны параллельны, то между сторонами AB и CD, а также BC и AD, имеются соответственные перпендикуляры.

3. Обозначим точку пересечения высоты AH и перпендикуляра, опущенного из точки H к стороне BC, как точку M. Точка M разделит высоту AH на две части: MH и AM.

4. Из прямоугольного треугольника AMH можно найти значение HM, используя теорему Пифагора. Так как АМ является одной из сторон этого треугольника и равна 3 (по условию), а другая сторона HМ ищется, то можно воспользоваться теоремой Пифагора в виде:

HM² = AH² - AM²
HM² = 3² - AM²

5. Для решения задачи нам нужно найти значение HM, а не HM². Поэтому возьмем квадратный корень от обеих сторон:

HM = √(3² - AM²)

6. Чтобы найти AM, нужно воспользоваться свойством прямоугольного треугольника AMH. Так как прямоугольник ABCD является параллелограммом, то углы AMH и KHC также являются прямыми углами. Это означает, что AM и HK являются перпендикулярными высотами, и их длины равны.

7. Следовательно, можно записать следующее равенство:

AM = HK

8. Используя равенство AM = HK и значения AH = 3, мы можем записать следующее уравнение:

HM = √(3² - AM²)

9. Видим, что AM = HK, поэтому можем заменить AM на HK в уравнении:

HM = √(3² - HK²)

10. Теперь мы можем найти значение HM, зная, что AB = 5.

AB = AM + HB
5 = 3 + HB
HB = 5 - 3
HB = 2

11. Таким образом, мы нашли значение HB - это 2.

HM = √(3² - HK²)
2 = √(3² - HK²)

12. Осталось решить полученное уравнение относительно HK.

2 = √(3² - HK²)
2² = 3² - HK²
4 = 9 - HK²
HK² = 9 - 4
HK² = 5

Теперь найдем значение HK, взяв квадратный корень из обеих сторон:

HK = √5

13. Таким образом, мы нашли значение HK в параллелограмме ABCD, равное √5.
4,8(77 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ