В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
Координаты середины отрезка ВС (точки М) находятся по формуле:
Xm = (Xc + Xb)/2, Ym = (Yc + Yb)/2. Отсюда
Xc=2*Xm-Xb или 6-(-2)=8;
Yc=2*Ym-Yb или -2-4 = -6. Значит С(8;-6).
2) В(4;-3) К(1;5)
Координаты середины отрезка ВМ (точки К) находятся по формуле:
Xk = (Xm + Xb)/2, Yk = (Ym + Yb)/2. Отсюда
Xm=2*Xk-Xb или 2-4=-2;
Ym=2*Yk-Yb или 10-(-3) = 13. Значит М(-2;13).
Тогда координаты точки С:
Xc=2*Xm-Xb или -4-4=-8;
Yc=2*Ym-Yb или 26-(-3) = 29. Значит С(-8;29).
ответ: 1) С(8;-6) 2) С(-8;29)