Площадь трапеции равна произведению полусуммы оснований и высоты.
Основания равны а = 5см, в = 15 см, боковая сторона с = 13 см
Найдём высоту.
Разность оснований в - а = 10см.
Поскольку трапеция равнобедренная, то опустив высоты из вершин меньшего основания на большее основание, получим с каждой стороны по половинке в - а,
т.е. 10/2 = 5см.
Треугольник, образованный высотой, боковой стороной и отрезком большего основания, отсечённым от него высотой, является прямоугольным. По теореме Пифагора: 13^2 = 5^2 + H^2
Откуда H^2 = 13^2 - 5^2 = 169 - 25 = 144
Н = 12
Sтрап = 0,5 (а + в) * Н = 0,5 (5 + 15) * 12 = 120 (кв.см)
131.
1) а) Пусть x - первый угол, тогда 5x - второй угол. Сумма односторонних углов равна 180°, поэтому составим уравнение:
x + 5x = 180°
6x = 180°
x = 30° - первый угол
5 * 30° = 150° - второй угол
б) Аналогично. x - один угол, 8x - второй угол. Уравнение:
x + 8x = 180°
9x = 180°
x = 20° - первый угол
8 * 20° = 160° - второй угол
2) а) x - один угол, x + 50° - второй угол. Уравнение:
x + x + 50° = 180°
2x = 130°
x = 65° - первый угол
65° + 50° = 115° - второй угол
б) x - первый угол, x + 70° - второй угол. Уравнение:
x + x + 70° = 180°
2x = 110°
x = 55° - первый угол
55° + 70° = 125° - второй угол
132.
1) ∠CBD и ∠ADB; ∠DBA и ∠BDC
2) ∠DAB и ∠ABD
3) а) ∠BCD = 47°; б) ∠BDA = 38°
133.
1) ∠MDA; AB
2) ∠DEC; BC
3) ∠BDE; AB
134.
а) ∠BDE = 48°; ∠ADE = 132°
б) ∠BED = 75°; ∠CEK = 75°
Дано трапеция ABCD, BC=5, AD=15, AB=CD=13
Из вершины C на AD опустим перпендикуляр CK, тогда
KD=(AD-BC)/2=(15-5)/2=5
Из треугольника KCD по теореме Пифагора
(СK)^2=(CD)^2-(KD)^2=169- 25=144
СК=√144=12
S=(a+b)*h/2
S=(15+5)*12/2=120