АВС - прямоугольный тр-ник, угол В прямой, АС - гипотенуза. ВМ - медиана.
Медиана делит сторону, к которой она проведена, пополам. Значит АМ = МС.
В прямоугольном тр-нике медиана, проведенная к гипотенузе, равна ее половине, т.е.
ВМ = ВМ = СМ = 10 см, тогда гипотенуза АС = 20 см.
Медиана ВМ делит прямой угол в отношении 1 : 2, значит
угол АВМ = 90 : 3 * 2 = 60 градусов
угол СВМ = 90 - 60 = 30 градусов.
Тр-ник АМВ - равнобедренный, поскольку АМ = ВМ, АВ - основание.
Углы при основании равны, т.е. угол МАВ = МВА = 60, тогда угол АМВ = 180 - 60 * 2 = 60.
Значит тр-ник АМВ равносторонний, АВ = 16 см.
Меньшая средняя линия параллельна меньшей стороне (АВ) и равна ее половине, т.е. 8 см.
Отрезок АВ пересекает плоскость α, следовательно, т.А и т.В расположены по по разные стороны от плоскости.
Через две параллельные прямые можно провести плоскость, притом только одну. АА1 и ВВ1 лежат в одной плоскости, параллельная им ММ1 лежит в той же плоскости. Эта плоскость пересекает плоскость α по прямой А1В1.
Проведем АС║А1В1 и продолжим ММ1 до пересечения с ней в т.К, а ВВ1 - в точке С.
В параллелограмме АА1В1С стороны СВ1=АА1=5, МК параллельна им и равна 5.
В ∆ АВС прямая МК - средняя линия и равна половине ВС.
ВС=ВВ1+СВ1=12
МК=12:2=6
ММ1=МК-М1К=6-5=1 ( ед. длины)
Подробнее - на -
Объяснение:
В условии задаче сказано, что клетка имеет размеры 1 х 1. Медиана равна 3 клетка => ответ: 3