Решений у этой задачи несколько - есть посложнее и подлиннее есть попроще и покороче. Во вложении даны два рисунка. Один для любителей более сложных решений через подобие четырехугольников НАКО1 и КОМА в рис. 1 Более простое решение, к нему дан рисунок 2 Соединим центры окружностей - вписанной в треугольник АВС и вневписанной. Точку С также соединим с этими центрами. Угол КСО прямой, т.к. равен сумме половин смежных углов ( центры окружностей лежат на биссектрисах углов). Треугольник КСО - прямоугольный. СН в нем -высота и равна половине АС, т.е. равна 5 см Отрезок ОН равен радиусу вневписанной окружности и равен 7,5 Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Из этого следует равенство: СН²=ОН·КН 25=7,5КН r =КН=25:7,5=3 ¹⁄₃
BC = 7
AD = 25
BD = 20
Трапеция равнобедренная
P - ?
----------------------------------------------
1)
Рассмотрим треугольники ABK и DCM (прямоугольные) :
AB = DC (т.к трапеция равнобедренная)
∠BAK = ∠CDM (т.к трапеция равнобедренная)
Значит треугольник ABK = треугольнику DCM => AK = DM
2)
KM = 7
AK = DM = (25 - 7) : 2 = 18 : 2 = 9 (см)
KD = KM + MD = 7 + 9 = 16 (см)
3)
Рассмотри треугольник KBD(прямоугольный) :
По теореме Пифагора :
4)
Рассмотри треугольник ABK(прямоугольный) :
По теореме Пифагора :
5)
P = BC + AD + AB + DC = BC + AD + 2AB = 25 + 7 + 2 * 15 = 32+30 = 62 (см)
ответ : 62 см