решить задачу: На сторонах угла М отложены равные отрезки МА и МВ. На биссектрисе угла М отложены отрезки МК и МС, причем МС > MK. Докажите равенство треугольников СКВ и СКА.
«рассмотрим треугольники МАК и МБК у них одна сторона(МК) общая, другие стороны(МА и МВ) равны по условию, т.к. МС бессектриса угла М, то угол КМА равен углу ВМС. Теперь треугольники МАК и МБК равны по двум сторонам и углу между ними. соответственно равны 2 елемента, а именно АК и КВ , угол МКА и МКВ. теперь угол АКС равен ВКС т.к. углы, смежные с ними равны, сторона КС общая и как мы уже выяснили АК=ВК, а это значит, что теперь треугольники СКВ и СКА равны по двум сторонам и углу между ними»
1) Уравнение плоскости, проходящей через точку перпендикулярно векторуДана точка и вектор . То есть и прямая и точка должны иметь соответствующие координаты. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору: . . Раскрыв скобки и приведя подобные, получаем уравнение плоскости общего вида Ax + By + Cz + D = 0. Для построения плоскости её уравнение общего вида надо преобразовать в уравнение в отрезках. Значения (-D/A) = a, (-D/B) = b, (-D/C) = это и есть отрезки на осях, через которые проходит плоскость.
Вообще-то есть формула для нахождения радиуса окружности, описанной около равностороннего треугольника.
R = V3/3 * a, где R - радиус описанной окружности, V - знак корня, а - сторона равностороннего треугольника
Но, если хочешь, можно и посчитать. Только чертеж сделай и смотри внимательно.
Дело в том, что в равностороннем треугольнике и высоты, и биссектрисы, и медианы пересекаются в одной точке. И эта точка является центром окружности, описанной около этого треугольника.
Проведи медиану (высоту, биссектрису) из любого угла. Т. е. раздели треугольник пополам. Получился прямоугольный треугольник (высоту ведь опустили) , у которого гипотенуза равна 6 см, а катет равен 3 см (половина, медиана ведь)
По теореме Пифагора находим второй катет . Получим 3V3 (три корня из трех)
А медианы в точке пересечения делятся на отрезки в отношении 2:1. Значит, та часть, которая является радиусом окружности -- это 2V3, а другая часть 1V3
а если бы подставила в формулу, получила бы такой же ответ R= V3/3 *6= 2V3
Доказать равенство треугольников.