На средней линии трапеции abcd с основаниями bc и ad выбрали произвольную точку x. докажите, что сумма площадей треугольников abx и cdx равна половине площади трапеции.
Смотри рисунок. Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные. х+2х=180 3х=180 х=60 - это угол OCB. Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов Запишем для угла OCB: cos 60 = BC/AC поскольку по условию AC=100, имеем cos 60= BC/100⇒ BC = 100× cos 60 cos 60 - это табличная величина = 1/2 BC= 100×1/2=50 Запишем для угла OBC: sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25 sin 30 - это табличная величина = 1/ 2 ответ: OC=25
Объяснение:
7)
<АВС=180°-<А*2=180°-30°=150°
Н=АВ/2=2/2=1 ед высота треугольника опущенная на ВС.
S=1/2*BC*H=1/2*2*1=1ед²
ответ: 1ед²
13)
S=MN²√3/4=4²√3/4=4√3 ед²
ответ: 4√3 ед².
14)
ВС=Р/3=6/3=2 ед сторона треугольника.
S=BC²√3/4=2²√3/4=√3 ед²
ответ: √3 ед²
15)
АВС- равносторонний треугольник.
S=AC²√3/4=8²√3/4=64√3/4=16√3 ед²
ответ: 16√3 ед²
19)
<В=180°-2*75°=30°
S=1/2*BC²*sin<B=1/2*2²*1/2=1ед²
ответ: 1ед²
20)
∆АВС- равносторонний.
S=a²√3/4 ед²
ответ: а²√3/4 ед²
21)
По формуле Герона.
р=(2*LM+KM)/2=50/2=25
S=√(25(25-13)(25-13)(25-24)=√(25*12*12*1)=
=5*12=60ед²
ответ: 60ед²