Задание 1 - ответ: А) 120 см².
Задание 2 - ответ: Г) d sin α
Задание 3 - ответ: В) 432
Объяснение:
Задание 1.
Площадь боковой поверхности четырехугольной призмы равна произведению периметра основания на длину бокового ребра.
Так как четырёхугольная призма является правильной, то в её основании лежит квадрат, периметр которого равен:
P = 4 * 6 = 24 см.
Отсюда площадь боковой поверхности призмы:
Sб = 24 * 5 = 120 см²
ответ: А) 120 см².
Задание 2.
В прямоугольном треугольнике, образованном диагональю, боковым ребром и проекцией диагонали на плоскость основания, боковое ребро является катетом, лежащим против угла α, а диагональ d является гипотенузой.
Катет равен произведению гипотенузы на синус угла, противолежащего этому катету, то есть:
Боковое ребро = d sin α
ответ: Г) d sin α
Задание 3.
В основании правильной четырёхугольной пирамиды лежит квадрат, а проекцией вершины пирамиды является центр квадрата основания, в силу чего все 4 боковые грани по площади равны между собой.
Каждая из четырёх боковых граней представляет из себя равнобедренный треугольник со стороной основания 18 см и двумя боковыми сторонами по 15 см.
Находим по теореме Пифагора высоту этого треугольника:
h = √ [(15² - (18/2)²] = √ (225 - 81) = √144 = 12 см
Площадь одного треугольника - это одна-вторая произведения основания на высоту:
(18 * 12): 2 = 216 : 2 = 108 см².
Площадь 4-х таких треугольников:
108 * 4 = 432 см².
ответ: В) 432
Диагональ делит параллелограмм на 2 равных треугольника. Считаем площадь одного, умножаем на 2 и - вуаля! (площадь треугольника считаем по формуле S = a*b*sin(C)/2). Окончательно
S = 14*8,1*(1/2) = 56,7.
Ну хорошо, поступила без синусов. Тогда так. Из вершины диагонали, которая НЕ общая с заданной стороной, опускаем перпендикуляр на эту сторону. Это - высота параллелограмма (и того треугольника, про который я говорил - тоже, но это не важно). У нас получился прямоугольный треугольник, у которого острый угол 30 градусов, а высота - противолежащий катет (углу в 30 градусов). Поэтому высота равна половине гипотенузы этого треугольника, то есть - в данном случае - диагонали параллелограмма. То есть высота параллелограмма равна 14/2 = 7.
S = 7*8,1 = ... ну, вы уже в курсе :