Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
А). Нехай один катет становыть х см, звідси інший - (х+5)см. За т. Піфагора: 625=х^2+x^2+10x+25 2x^2+10x-600=0 x^2+5x-300=0 x=15 (см.) - розмір одного катета. x=-20 не задовільняє задачу. 20 см. - розмір іншого катета. Звідси периметр становить 45+15=60 (см.)
б). х - коэфіціент пропорційності. За т. Піфагора: корінь із 9х^2+16х^2=корінь із 25х^2=5x - гіпотенуза трикутника. Звідси периметр становить: 7х+5x=60 12х=60 х=5 Отже гіпотенуза становить 5х=5*5=25.
кули это шары, насколько я помню
r1 + r2 = 17;
r1 - r2 = 7; (ужас какая сложная система) складываем
2*r1 = 24; r1 = 12; r2 = 5;
r1/r2 = 12/5; отнощение объемов (12/5)^3 = 1728/125 = 13,824 (точно)