построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
АВС - данный равнобедренный треугольник с основанием АС = 30. АК - высота к боковой стороне ВС. АК = 24 Треугольник АКС прямоугольный. Находим по теореме Пифагора СК. СК = sqrt(30^2 - 24^2) = 18 Проводим высоту к основанию, это будет отрезок ВН. Треугольники ВНС и АКС подобны по двум углам. Тогда выполняется пропорция ВС / АС = НС / КС, НС = 1/2АС = 15 ВС / 30 = 15 / 18 Отсюда ВС = 30*15 / 18 = 25 Боковая сторона равна 25
А можно и уравнением сделать. АВ = х, ВК = х - 18 Уравнение: 24^2 + (x - 18)^2 = x^2 Решив уравнение, получите х = 25
построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
Как то так!