Если прямая перпендикулярна одной из двух параллельных прямых ,то : 1 другую прямую она не пересекает 2 другой прямой она параллельна 3 она перпендикулярна и другой прямой 4 с другой прямой она совпадает
Центральная симметрия относительно точки О - это такое преобразование пространства, при котором каждая точка А отображается в точку А' такую, что АО = A'O.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры точка, симметричная ей относительно точки О, так же принадлежит этой фигуре.
Примеры фигур, имеющих центр симметрии:
отрезок, квадрат, круг, параллелограмм, правильный многоугольник с четным количеством сторон.
Примеры фигур, не имеющих центра симметрии:
треугольник, многоугольник с нечетным количеством сторон, трапеция.
1) Периметр параллелограмма находится по формуле P = 2(a+b). Так как стороны относятся друг к другу как 3:1, то первая сторона будет 3х, а вторая х. 32 = 2(3х+х) 32 = 2*4х 32 = 8х х = 32/8 = 4 Наибольшая из сторон равна 3х => 3*4 = 12см. ответ: Б 2) В параллелограмме противоположные углы равны, значит угол А = углу С, а угол В = углу D. Сумма всех углов в параллелограмме равна 360 градусов => D = 360 - 237 = 123 градуса. угол В = углу D = 123 градуса ответ: Б 3) Угол ABD = 52 градусам, а угол ADB = 26 градусам. Так как противоположные стороны в параллелограмме параллельны, а диалгональ BD - секущая => углы DBC и ADB накрест лежащие и равны друг другу. угол B = угол ABD + угол DBC = 52+26 = 78 ответ: Г 4) Сторона AD = 8+4 = 12см. Т.к. противолежащие стороны параллелограмма параллельны, то угол MCB и угол AMB накрест лежащие => равны. В треугольнике BAM углы AMB и ABM равны => треугольник равнобедренный, значит AM = AB = 8см. По формуле P = 2(a+b) = 2(8+12) = 2* 20 = 40 см. ответ: А
ответ: Не всякая фигура имеет центр симметрии.
Объяснение:
Центральная симметрия относительно точки О - это такое преобразование пространства, при котором каждая точка А отображается в точку А' такую, что АО = A'O.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры точка, симметричная ей относительно точки О, так же принадлежит этой фигуре.
Примеры фигур, имеющих центр симметрии:
отрезок, квадрат, круг, параллелограмм, правильный многоугольник с четным количеством сторон.
Примеры фигур, не имеющих центра симметрии:
треугольник, многоугольник с нечетным количеством сторон, трапеция.