в прямоугольном треугольнике один катет равен 12 см А гипотенуза равна 15 см расстояние от точки не лежащей в плоскости треугольника, до сторон треугольника равна 5 см. найти рвсстояние от точки
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см