Пусть в треугольнике АВС угол А равен а, угол с равен ь, проведены биссектрисы AD и СЕ, которые пересекаются в точке О (см. рисунок). Рассмотрим треугольник АОС. Сумма его углов равна 180 градусам, тогда угол АОС равен 180-1/2ВАC-1/2BCA= 180- AC - ECA = 180 - 1/2 (a+b). Угол, под которым пересекаются две прямые это наименьший из углов, которые получаются при их пересечении. Докажем, что угол ЕОА будет меньше угла АОС, тогда угол ЕОА - угол, под которым пересекаются биссектрисы. Действительно, угол ЕОА является смежным с углом АОС, тогда он равен 1/2(a+b). Так как а+ь<180, 1/2(a+b)<90 и 2(a + b) < 180 /2(a+b), то есть, какими бы ни были углы а и ь, угол ЕОА всегда будет меньше угла АОС. Окончательный ответ - 1/2(a+b).
Диагональ параллелепипеда проектируется на диагональ квадрата в основании, равную 2 (раз сторона корень из 2).
Вместе с высотой параллелепипеда эти диагонали образуют прямоугольный треугольник.
Поэтому D^2 - H^2 = 2^2; D - диагональ параллелепипеда, Н - ВЫСОТА (боковая сторона параллелепипеда)
Диагональ параллелепипеда проектируется на диагональ Db любой боковой грани, у этой боковой грани одна сторона Н, другая КОРЕНЬ(2); то есть она равна
Db = корень(H^2 + 2);
Задан угол между боковой гранью и диагональю D, то есть угол между D и Db, то есть
Db/D = cos(30) = корень(3)/2; Db^2 = D^2*3/4; (H^2 + 2) = 3/4*(4 + H^2);
Очень трудное уравнение :) Н^2 = 4; H = 2;
V = 2*(корень(2))^2 = 4;
солнце
радуга
птичка
дождик
Объяснение: