M=4 дм - апофема усечённой пирамиды. Пусть сторона большего основания равна а, тогда сторона меньшего а/3. Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9. Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3. Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒ 5а²+48а-837=0 а1=-93/5 - отрицательное значение не подходит. а2=9. Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм. h²=m²-b²=4²-3²=7 h=√7 дм. ответ: высота усечённой пирамиды равна √7 дм.
800π см³
Объяснение:
Дано:
Цилиндр:
AB=12см
ОК=8см
<О1КО=45°
V=?
ОА=ОВ=R, радиусы.
∆АОВ- равнобедренный треугольник
ОК- высота, медиана и биссектрисса равнобедренного треугольника ∆АОВ
АК=АВ.
АК=АВ/2=12/2=6см
∆ОАК- прямоугольный треугольник
По теореме Пифагора
ОА=√(ОК²+АК²)=√(8²+6²)=√(64+36)=
=√100=10см. Радиус цилиндра.
Sосн=ОА²*π=10²π=100π см².
∆О1ОК- прямоугольный треугольник
<О1ОК=90°
<ОКО1=45°
<ОО1К=45°
∆О1ОК- равнобедренный треугольник, (углы при основании равны)
О1О=ОК=8см высота цилиндра.
V=Sосн*О1О=100π*8=800π см³