Отрезок 17 - есть длина радиуса окружности. Соединим вершины при основании с центром окружности. В полученном равнобедренном треугольнике (боковые стороны равны радиусам по построению) высота, совпадает с высотой заданного треугольника и равна 8. Она же является медианой, поэтому ее конец делит основание треугольника пополам. Рассмотрим прямоугольный треугольник, образованный высотой, радиусом и половиной основания. В нем нам известна гипотенуза (радиус) и один из катетов (высота). Найдем второй катет, т. е половину основания по теореме Пифагора. Он равен 15. Т.о. мы знаем высоту заданного треугольника 17+8=25 и основание 15*2=30. Легко находим площадь.
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
(7+8):2*7=52,5
Объяснение:
Раз биссектриса,то высота трапеции ровна меньшему основанию,значит площадь трапеции равна