1. Ромб можно разбить диагоналями на 4 равных прямоугольных треугольника, где катеты равны половине диагоналей а гипотенузой является его сторона. Т.е. сторона ромба равна =2 2. Диагональ делит прямоугольник на 2 равных прямоугольных треугольника. Обозначим длину одного катета за 3x, другого за 4x. Тогда (3x)^2+(4x)^2=25^2; 9x^2+16x^2=25^2; 25x^2=625; x^2=25; x=5(корень -5 не подходит, т.к.длина не бывает отрицательной). Т.е. длина одной стороны прямоугольника 5*3=15, другой: 5*4=20. P=2(15+20)=70 см. 3. Проведем две высоты из точек меньшего основания к большему основанию. Тогда средний отрезок равен меньшему основанию, а крайние равны между собой(из равенства образованных треугольников по катету и гипотенузе) Т.е. крайние отрезки равны (10-4)/2=3 см. Рассмотрим любой из крайних треугольников. Он прямоугольный, а высота - катет, так что высота равна =4 см.
1. всі чотири сторони квадрата мають однакову довжину, тобто вони рівні: ab = bc = cd = ad 2. протилежні сторони квадрата паралельні: ab||cd, bc||ad 3. всі чотири кути квадрата прямі: ∠abc = ∠bcd = ∠cda = ∠dab = 90° 4. сума кутів квадрата дорівнює 360 градусів: ∠abc + ∠bcd + ∠cda + ∠dab = 360° 5. діагоналі квадрата мають однакової довжини: ac = bd 6. кожна діагональ квадрата ділить квадрат на дві однакові симетричні фігури 7. діагоналі квадрата перетинаються під прямим кутом, і розділяють одна одну навпіл: ac┴bd ao = bo = co = do = d 2 8. точка перетину діагоналей називається центром квадрату і також є центром вписаного та описаного кола 9. кожна діагональ ділить кут квадрату навпіл, тобто вони є бісектрисами кутів квадрату: δabc = δadc = δbad = δbcd ∠acb = ∠acd = ∠bdc = ∠bda = ∠cab = ∠cad = ∠dbc = ∠dba = 45° 10. обидві діагоналі розділяють квадрат на чотири рівні трикутника, до того ж ці трикутники одночасно і рівнобедрені, і прямокутні: δaob = δboc = δcod = δdoa
2. Диагональ делит прямоугольник на 2 равных прямоугольных треугольника. Обозначим длину одного катета за 3x, другого за 4x. Тогда
(3x)^2+(4x)^2=25^2;
9x^2+16x^2=25^2;
25x^2=625;
x^2=25; x=5(корень -5 не подходит, т.к.длина не бывает отрицательной).
Т.е. длина одной стороны прямоугольника 5*3=15, другой: 5*4=20.
P=2(15+20)=70 см.
3. Проведем две высоты из точек меньшего основания к большему основанию. Тогда средний отрезок равен меньшему основанию, а крайние равны между собой(из равенства образованных треугольников по катету и гипотенузе) Т.е. крайние отрезки равны (10-4)/2=3 см. Рассмотрим любой из крайних треугольников. Он прямоугольный, а высота - катет, так что высота равна
P.S. Буквы обозначь сам