Пусть точка пересечения O, тогда у нас получается, по условию, что DO=OF, а PO=OK. так же при соединении прямых у нас получит четырёхугольник PDKF так же 4 треугольника, будем рассматривать их. рассмотрим треугольники PDO и KOF, в них PO=OK, DO=OF, угол DOP= углу KOF ( как вертикальные), значит треугольник PDO=треугольнику KOF и значит PD=KF теперь рассмотрим треугольники DOK и POF они равны так как DO=OF, PO=OK и угол DOK=POF значит DK=PF из этого следует, что четырёхугольник PDKF является параллелограммом а в параллелограмме противоположные стороны равны и параллельны, значит PD || KF
Вот смотри, если же все грани параллелепипеда ABCDA1B1C1D1 - квадраты, то это куб.
Плоскости DA1 B1 и MKP параллельны по условию твоей задачи, если эти плоскости параллельны, то они пересекают плоскость ADD1 по параллельным прямым MК и DA1 и есть плоскость CBB1 по параллельным прямым ЕР и CB1.
MKРЕ -как раз и искомое сечение. КМ- гипотенуза равнобедренного прямоугольного треугольника с катетом а/2, КМ=а√2 /2. КР=а.
Тогда периметр Р=2*(а√2 /2+а)=а√2+2а=а(√2+2).
Я думаю, числовые значения из твой задачи можно подставить самостоятельно :в
так же при соединении прямых у нас получит четырёхугольник PDKF
так же 4 треугольника, будем рассматривать их.
рассмотрим треугольники PDO и KOF, в них
PO=OK, DO=OF, угол DOP= углу KOF ( как вертикальные), значит
треугольник PDO=треугольнику KOF и значит PD=KF
теперь рассмотрим треугольники DOK и POF
они равны так как DO=OF, PO=OK и угол DOK=POF
значит DK=PF
из этого следует, что четырёхугольник PDKF является параллелограммом
а в параллелограмме противоположные стороны равны и параллельны, значит
PD || KF