Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
Расскажу 3-ю. Пусть даны точки А и В и прямая m. 1) Построим точку D, в которой искомая окружность будет касаться прямой m. a) Если AB||m, то D - пересечение серединного перпендикуляра к АВ с прямой m, и тем самым D построена. б) Пусть прямая АВ пересекает m в точке С и пусть B лежит между А и С. Тогда по свойству касательной и секущей должно быть СD²=АС·BC. Строим окружность с диаметром AC, а через B проводим перпендикуляр к AC до пересечения с этой окружностью в точке E. Тогда AEC - прямоугольный треугольник и поэтому EC²=АС·ВС. На m откладываем отрезок CD равный EC, так чтобы угол ACD был острый. Тем самым D найдена.
2) Строим серединные перпендикуляры к AD и к BD. Их пересечение и есть центр искомой окружности.
P.S. Если AB перпендикулярно m и A,B не лежат на m, то такую окружность, ясное дело, построить нельзя.
Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
Объяснение:
Все есть в правилах :)