1.Дано:
∆АВС - прямоугольный.
АВ = 4 см.
∠С = 30°
Найти:
АС.
РЕШЕНИЕ.
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АС = 4 × 2 = 8 см.
ответ: 8 см.
2.Дано:
∆АВС - прямоугольный.
∠В = 45°
CD = 8 см (высота)
Найти:
АВ.
Решение.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 45 = 45°
∠В = ∠А = 45° => ∆АВС - равнобедренный.
=> CD - медиана, высота, биссектриса.
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
=> АВ = 8 × 2 = 16 см.
ответ: 16 см
3.Дано:
∆АВС - прямоугольный.
∠А = 30°
∠ВЕС = 60°
ЕС = 7 см.
Найти:
АЕ.
Решение.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
∠ЕВС = 90 - 60 = 30°
Если УГОЛ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА РАВНЯЕТСЯ 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВЕ = 7 × 2 = 14 см
∠АВЕ = 60 - 30 = 30°
∠АВЕ = ∠А = 30° => ∆ВЕА - равнобедренный.
=> АЕ = ЕВ = 14 см
ответ: 14 см
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)