Дано: ABCD - трапеция; AD║BC; ∠ABC = 160°; ∠BCD = 110° FG = 8 - средняя линия NE = 3; BN=NC; AE=ED
Продлить стороны AB и DC ⇒ получился ΔBMC ∠MBC = 180° - ∠ABC = 180°-160° = 20° ∠BCM = 180° - ∠BCD = 180°-110° = 70° ∠BMC = 180° - ∠MBC - ∠BCM = 180° - 20° - 70° = 90° ⇒ ΔBMC - прямоугольный ⇒ медиана MN равна половине гипотенузы BC MN = BN = NC = X ⇒ ΔMNC - равнобедренный
BC║FG - средняя линия трапеции ⇒ ΔKMG подобен ΔNMC по двум соответственным углам ⇒ MK = KG ⇒ X + ЕN/2 = FG/2 X = 4 - 1,5 = 2,5 BC = 2X = 5 Средняя линия FG = (BC + AD)/2 = 8 BC + AD = 16; AD = 16 - 5 = 11
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне. 2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете). 3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания. 4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию. 5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания. 6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
үнемдеу
экспорттау