Есть теорема которая гласит, что через две пересекающиеся прямые проходит одна и только одна плоскость. Пусть эти прямые будут a & b. Так как по условию b пересекает c, то они имеют одну общую точку, которая лежит на b, и следовательно эта точка лежит в плоскости. Так как c пересекает a, то они тоже имеют одну общую точку, которая лежит на a, и следовательно это точка лежит в той же плоскости. Далее есть такое утверждение, что если две точки прямой лежат в плоскости, то и вся прямая лежит в этой же плоскости. Так как две точки прямой c лежат в плоскости в которой лежат a & b то и c принадлежит той же плоскости
Пусть дан параллелограмм авсd и его диагональ ас. полный угол а равен сумме меньших углов, из которых он состоит, т.е. ваd = вас + dас = 40 + 20 = 60 градусов. теперь рассмотрим сам параллелограмм. сторона ав является секущей по отношению к пареллельным прям вс и аd (противолежащие стороны параллелограмма параллельны друг другу). по теореме о углах, образованный при пересечении параллельных прямых секущей, сумма односторонних углов, коими являются углы авс и ваd, равна 180 градусам, т.е. авс + ваd = 180. авс = 180 - ваd = 180 - 60 = 120 градусов. больший угол параллелограмма авс равен 180 градусам.