Объяснение:
Знайдем кут АВО.Кут ОВС=90°(як кут радіуса і дотичної).
Кут ОВС=кут АВС+кут АВО.Тому кут АВО=Кут ОВС-кут АВС=90°-70°=20°
Кут АВО=куту ВАО,як кути при основі рівнобедренного трикутника ΔАОВ.Тому кут АОВ=180°-2*кут АВО=180°-2*20°=180°-40°=140°
№2
Проведем додатково радіус ОВ.ΔАОВ- рівнобедренний,з основою ВС.Кути при основі рівні ,тому кут ВОС=180°-кутОСВ*2= 180°-60°*2=60°.
Кут ВОС є зовнішним для рівнобедренного ΔАОВ,
тому кут А+кут АВО= куту ВОС.Але кут А=кут АВО(як кути при основі).
кут А= кут ВОС:2=60°:2=30° .
Отже ΔАВС-прямокутний,де ВС-катет ,який лежить проти кута 30°.Він дорівнює половині гіпотенузи.ВС=1/2АС=10:2=5 см
AC - ?
Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма.
Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 ||
AC² =2(5² +6²) -(2*5)²=22.
AC =√22.
ответ: √22.
Или
Из ΔAMB по теореме косинусов
AB² =AM² +BM² -2AM*BM*cos∠AMB (1)
Аналогично из ΔCMB ,CB² =CM²+BM² -2CM*BM*cos(180° -∠AMB) или
CB² =CM²+BM² +2CM*BM*cos∠AMB (2)
Складывая уравнения (1) и (2) получаем :
AB² +CB²= AM²+CM² +2BM² ;
AB² +CB²= (AC/2)²+(AC/2)² +2BM² ;
AB² +CB²= AC²/2 +2BM² ;
2(AB² +CB²)= AC² +(2BM)² ; * * *AC² + BD² =2(AB² +CB²) || BD=2BM.* *
AC² = 2(AB² +CB²) -(2BM)²