Дано АВСД-трапеция АВIIСД
уголА= уголД (углы при основании)
уголА+уголВ=180 угол В=150
АВ=СД=14корень3 (боковые стороны)
ВС=10
Найти Sавсд
Решение Проведем высоту ВН к основанию АД рассмотрим треугольник АВН- прямоугольный. АВ-гипотенуза, угол А=180-150=30. Против угла в 30 лежит высота ВН=1/2АВ=7корень3. АС=корень АВ2-ВН2=21.
Проведем высоту СК к основанию АД. Треугольник СДК- прямоугольный. треугольник СДК=треугольнику АВН АВ=СД, угол А=уголД (по гипотенузе и острому углу). Равны и соответственные стороны ВН=СК=21. АД=ВН+ВС+СК=52 Sавсд=1/2(ВС+АД)*ВН=1/2*52*7корень3=182 корень3
Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник
NM = DH = 12 (в прямоугольнике противоположные стороны равны)
HC = DC - DH = 18 - 12 = 6
∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)
Рассмотрим ΔMHC и ΔBNM
∠H = ∠N = 90°
∠DCB = ∠NMB (соответственные при NM || DC секущей BC)
==> ΔMHC ~ ΔBNM по двум углам
В подобных треугольниках соответственные стороны пропорциональны
Синус - отношение противолежащего катета к гипотенузе
ответ: sinB = 0,75.