Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).
) Построение равнобедренного треугольника по основанию и боковой стороне. 1. Проводим прямую "а". 2. Замеряем циркулем длину данного нам основания. 3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию. 3. Замеряем циркулем длину данной нам боковой стороны. 4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а". 5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В. 6. Соединяем точки А,В и с. Получен искомый треугольник. 2) Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.
Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).