Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
ответ 72, решаешь так: S=(ad+bc)/2 * h, где h - это высота, опустим из b и из c в точки H и H1, так как это р/б трапеция, то AH * 2 + BC = 15, на рисунке увидеть просто, после найдём AH = 6. sinB=0.8, sinB=sin(90+ABH), где по формуле получим: sin(90 + abh) = sin90*cos(abh) + cin(abh)*cos90, так как cso90 = 0, а cin90 = 1, то это всё равно cosABH = sinB = 0.8, после sinABH = корень из (1 - cos^2(abh) ) получим sin(abh) = 0.6, sin(abh)=AB/AH, AB = 6/0.6 = 10, после по пифагору найдём BH, AB^2=AH^2+h^2, h = 8, после подставим в первую формулу и получим S = 9 * 8 = 72, решено
мде)
Дано: треугольник ABC, AB = 9 см, AC = 40 см
Найти: BC, углы B и C.
Решение: 1) BC^2 = AB^2 + AC^2 - по теореме Пифагора
BC = кореньквадратныйиз(9^2 + 40^2) = кореньквадратныйиз(81 + 1600) = корень квадратный из(1681) = 41
2) Углы можно найти многими Так например:
sin B = AC / BC = 40 / 41 = 0,9756
sin C = AB / BC = 9 / 41 = 0,2195
Угол B = 77.32
Угол С = 12.68
Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
32 - 100
x - 60
x = 19,2, округляем = 19
68 - 100
x - 60
x = 40,8 , округляем = 41
Получаем такие значения углов
B = 77 градусов 19 минут = 77°19'
C = 12 градусов 41 минута = 12°41'
=)