Срединный перпендикуляр диагонали АС прямоугольника АВСD пересекает сторону ВС и образует с ней угол, равный углу между диагоналями. Найдите этот угол.
Срединный перпендикуляр проведен к точке пересечения диагоналей, которая делит их пополам.
Обозначим его ОК.
Треугольник КОС - прямоугольный.
Боковые стороны треугольника СОD образованы равными половинами диагоналей, следовательно, он - равнобедренный.
Проведем в нем высоту ОМ, она же – биссектриса ( свойство равнобедренного треугольника) и делит угол COD пополам.
ОМ║КС ( углы КСМ=ОМС=90°)
∠ МОС=∠ОСК - накрестлежащие при пересечении параллельных прямых секущей. .
Но угол МОС - половина угла СОD, который равен углу СКО.
Следовательно, ∠КОС=2 ∠КСО.
Сумма углов прямоугольного треугольника равна 90°
Угол КСО=2 КСО=90°
∠КСО=90°: 3=30°
∠ СКО=60°
угол BOC=150 °,
угол BAC= 75°.
Объяснение:
Угол BOC - центральный; ∠BOC равен градусной мере дуги, на которую он опирается. ∠BOC=6=360-(112+98)=360-210=150*;
угол ВАС - вписанный; ∠BAC=1/2 градусной мере дуги на которую он опирается. ∠BAC=1/2(360-(112+98)=1/2(360-210) = 75*.