Пусть углы будут А В С, эти буквы легче набирать центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника с основаниями равными длинам сторон а в с и высотами равными R радиусу описанной окружности. Искомая площадь равна сумме площадей этих 3-х треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим a=2RsinA b=2RsinB c=2RsinC
Если все эти хорды пересекаются в одной точке. Следует что произведение одной части отрезка хорды на другую равны другой части хорды. Отсюда следует что хорды равны между собой , следовательно они симметрично расположены от центра . При пересечений всех трех хорд , получим правильный треугольник . Со сторонами равными . Проведем сам радиус , центр данного треугольника будет расположен относительно всех треух вершин равноудален , а радиус вписанной окружности в данный правильный треугольник будет равен Откуда получим сам радиус равным
cos^{2} \alpha +sin^{2} \alpha = 1
cos^{2} \alpha= 1-sin^{2} \alpha
Т.к. угол острый, то:
cos \alpha= \sqrt{1-sin^{2} \alpha}
а) sin α = 1/4
cos \alpha= \sqrt{1-(\frac{1}{4} )^{2} }= \sqrt{1-\frac{1}{16} }= \frac{\sqrt{15} }{4}
ответ: \frac{\sqrt{15} }{4}
б) sin α √3/2
cos \alpha=\sqrt{1-(\frac{\sqrt{3} }{2} )^{2} } = \sqrt{1-\frac{3}{4} } = \sqrt{\frac{1}{4} } = \frac{1}{2}
ответ: \frac{1}{2}
б) sin α = 0,72
cos \alpha=\sqrt{1-0,72^{2} }= \sqrt{1- 0,5184} = \sqrt{0,4816}
ответ: \sqrt{0,4816}
Объяснение: