Объяснение: Для прямоугольных треугольников должна выполняться теорема Пифагора - сумма квадратов катетов = квадрату гипотенузы. Гипотенуза в прямоугольном треугольнике самая большая сторона. Тогда имеем:
2) 11² +20² =? 25² т.е 121 + 400 = 521, 25² = 625. Прямоугольный треугольник такие стороны иметь не может, так как 521 ≠ 625
3) 18² + 24² =? 30² т.е. 324 + 576 = 900, 30² = 900. Такие стороны треугольник может иметь, так как условие теоремы Пифагора 18² + 24² = 30² выполняется.
4) 9² + 12² =? 15², т.е. 81 + 144 = 225, 15² = 225. Такие стороны треугольник может иметь, так как условие теоремы Пифагора 9² + 12² = 15² выполняется.
Условие задачи 1) не ясно. Решить нельзя.
Пусть уг.В = алфа, а уг.С = бета
Тогда в тр-ке ВОС углы прилежащие к основанию ВС: уг.СВО =0,5 алфа, уг. ВСО = 0,5бета.
В тр-ке КОЛ уг. КЛО = 0,5 бета, т.к уг. КЛО и уг.ВСО являются внутренними накрест лежашими при параллельных прямых ВС и ЛК и секущей СЛ.
В тр-ке КОЛ уг. ЛКО = 0,5 алфа, т.к уг. ЛКО и уг.СВО являются внутренними накрест лежашими при параллельных прямых ВС и ЛК и секущей ВК.
Треугольники КОЛ и ВОС подобны, по 1-му признаку: Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.