Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
a=10.5см; b=13,5см
Объяснение:
Дано:
параллелограмма
Р=48 см
b=a+3
a=?
Р=2(a+b)=48
2(a+b)=48;
a+b=24
b=a+3
a+a+3=24
2a+3=24
2a=24-3=21
a=21:2=10.5см
b=10.5+3=13,5см
a=10.5см; b=13,5см