Длина одного прямоугольника: х; длина другого: х+10.
Площади прямоугольников относятся, как 2:3, значит: S1/S2=2/3.
Площадь одного прямоугольника: S1=x*b; другого: S2=(x+10)*b.
Подставим в уравнение выше: (x*b)/((x+10)*b)=2/3, x/(x+10)=2/3, x=20.
Значит, длина первого прямоугольника: 20 м; второго — 20+10=30 (м).
Длина большого прямоугольника равна сумме длин тех, что внутри: 20+30=50.
Исходя из формулы площади, которую я написал вначале, вычислим ширину: b=S/a=2000/50=40 (м).
Итак, больший прямоугольник, это тот, у которого больше длина. Длина большего прямоугольника 30 м, а ширина, как и у первоначального прямоугольника, 40 м. 30/40=3/4
Длина одного прямоугольника: х; длина другого: х+10.
Площади прямоугольников относятся, как 2:3, значит: S1/S2=2/3.
Площадь одного прямоугольника: S1=x*b; другого: S2=(x+10)*b.
Подставим в уравнение выше: (x*b)/((x+10)*b)=2/3, x/(x+10)=2/3, x=20.
Значит, длина первого прямоугольника: 20 м; второго — 20+10=30 (м).
Длина большого прямоугольника равна сумме длин тех, что внутри: 20+30=50.
Исходя из формулы площади, которую я написал вначале, вычислим ширину: b=S/a=2000/50=40 (м).
Итак, больший прямоугольник, это тот, у которого больше длина. Длина большего прямоугольника 30 м, а ширина, как и у первоначального прямоугольника, 40 м. 30/40=3/4
Угол В = 180 - уг В
найдём cos B.
Проведём в трапеции отрезок СЕ // АД, получим тр-к СВЕ со сторонами СЕ = 2, ВС = 3 и ВЕ = 2.
Используем теорему косинусов и выразим сторону СЕ, противолежащую углу В через другие стороны и косинус В:
СЕ² = ВЕ² + ВС² - 2ВЕ·ВС·cosB
4 = 4 + 9 - 2· 2·3 ·cos B
cos B = 9/12 = 3/4
cos B = 0,75
cos C = cos (180 - B) = - cos B = -0,75
ответ: -0,75