Если достроим прямоугольный треугольник до прямоугольника так, чтобы гипотенуза была его диагональю (то есть присоединим к треугольнику второй такой же точно), то площадь такого прямоугольника будет ровно в 2 раза больше площади треугольника, то есть 2 * 512 * корень(3) = 1024*корень(3).
А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).
Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).
Корень(3) сокращаем, остаётся х*х = 1024. Отсюда х = корень(1024) = 32.
Объяснение:
Прямоугольник АВСD
BE = EF = FC
AG = GD
-------------------------
-------------------------
Пусть длинные стороны прямоугольника равны а, а короткие - b.
ВС = AD = a
FD = СВ = b
Тогда площадь прямоугольника
ΔBEH ~ ΔDGH по двум углам (∠BEH = ∠DHG - вертикальные углы; ∠HBE = ∠HDG -внутренние накрест лежащие углы при ВС║AD и секущей BD)
Из подобия этих треугольников следует пропорциональность сторон BE = a/3 и DG = a/2, откуда , что коэффициент подобия
k = a/3 : a/2 = 2/3
Высоты этих треугольников также относятся как 2:3, и высота ΔDGH равна 3b/5. Площадь ΔDGH равна
ΔBFK ~ ΔDGK по двум углам (∠BKFH = ∠DKG - вертикальные углы; ∠KBF = ∠KDG -внутренние накрест лежащие углы при ВС║AD и секущей BD) .
Из подобия этих треугольников следует пропорциональность сторон BF = 2a/3 и DG = a/2, откуда коэффициент подобия
k = 2/3 : a/2 = 4/3
Высоты этих треугольников также относятся как 4:3, и высота ΔDGK равна 3b/7. Площадь ΔDGK равна
Площадь ΔGHK