Вариант №1 часть а 1. если угол аос = 75 °, угол вос = 105°, то эти углы : а) смежные б) вертикальные в) определить невозможно 2. определите вид треугольника, если сумма двух его углов равна третьему углу? а) остроугольный в) прямоугольный б) тупоугольный г) определить невозможно 3. точка с принадлежит отрезку ав. чему равна длина отрезка ав, если ас=3,6 см, вс=2,5 см а) 1,1 б) 7,2 в) 6,1 г) 5 4. известны стороны равнобедренного треугольника: 2 см и 5 см. чему равен его периметр? а) 9 б) 6 в) 12 г) 15 5. сумма двух односторонних углов, образованных при пересечении прямых m и n секущей k, равна 148°. определить взаимное расположение прямых m и n. а) пересекаются б) параллельны в) такая ситуация невозможна 6. в прямоугольном треугольнике один из острых углов равен 25°. чему равен второй острый угол? а) 65° б) 25° в) 155° г) 90° 7-8. углы треугольника относятся как 1: 1: 7. определите вид данного треугольника. по углам: по сторонам: а)остроугольный а). разносторонний б)прямоугольный б) равносторонний в)тупоугольный в).равнобедренный 9. треугольника, с такими сторонами не существует: а) 1; 2; 3; б) 5; 5; 6; в) 5; 4; 3; г) 20; 21; 22 10. выберите верное утверждение. а)через любую точку можно провести только одну прямую б) сумма смежных углов равна 1800 в) если при пересечении двух прямых третьей прямой соответственные углы составляют в сумме 1800, то эти две прямые параллельны г)через любые две точки проходит более одной прямой часть в в равнобедренном треугольнике авс с основание ас угол в равен 42º. найдите два других угла треугольника. точки в и д лежат в разных полуплоскостях относительно прямой ас. треугольники авс и адс – равносторонние. докажите, что прямая ав параллельна прямой сд. в треугольнике авс медиана вd является биссектрисой треугольника. найдите периметр треугольника авс, если периметр треугольника авd равен 16 см, вd=5см.
D (0, 0, 0) DA | OY, DC | OX, DD1 | OZ
D (0, 0, 0), A1 (0, 1, 3), M (2, 0, 5/3)
Плоскость DA1M имеет вид ax + by + cz + d=0 если мы подставим координаты таких точек: D, A1, M, то получится так:
{a • 0 + b • 0 + c • 0 + d = 0
{a • 0 + b • 1 + c • 3 + d = 0
{a • 2 + b • 0 + c • (5/3) + d = 0
{d = 0
{b = - 3c
{a= - 5c/6
Поэтому отсюда вектор нормали имеет координаты: n(5/6, 3, -1)
Затем по формуле S (расстояние) от точки: D1(0, 0, 3) =:
l=|(5/6 • 0 + 3 • 0 - 3)|/sqrt ((5/6)^2 + 3^2 + (- 1)^2) = 18/sqrt(385).