1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Объяснение:
Висота дорівнює 8 см.
Объяснение:
Данний тип задач вирішується дуже просто, навіть устно. Покажу як це робиться в Варшавській школі: одна грань має площу 64 см² а друга 56 см², щоб отримати цю площу треба 8х8=64 , а іншу 7х8=56 , грані це прямокутники , в цих двох виразах є одне спільне, це величина 8 на яку ми множимо сторону основи паралелопипеда. Тому висота дорівнює 8.
Перевіримо: маємо об"єм фігури , в це площа основи * на висоту. Площа основи буде 8*7=56 см² , а висота 8 56*8=448 см³ а це відповідає умовам задачі.
Задачу можна рішати і іншим позначати невідомі сторони через Х і У , складати систему рівнянь , і врешті ми знайдемо це саме, але витратимо на це в тричі більше часу , ніж це я зробив. Удачі всім!
Доброго времени суток. Решение во вложении.