1.
1) ВН - высота трапеции
АН=(16-6)/2= 5см ( трапеция равнобедренная по условию)
2)тр. АВН прямоугольный
угол Н=90(градусов)
По теореме Пифагора:
ВН^2=АВ^2-AH^2
BH=12
3) S(ABCD)= (BC+AD)/2 * BH
S=(16+6)/2 * 12 = 132 см^2
2.
ВН является высотой и медианой( тк треугольник равнобедр. по усл)
АН=20/2=10
соs30=АН/АВ
корень из 3/2=10/АВ( теперь накрест перемножаем)
корень из 3*АВ=2*10
АВ=20/корень из 3
3. MK-касательная,она образует с МО( с радиусом) угол 90 градусов=>треугольник MOK прямоугольный,а КО-гипотенуза.
по теореме Пифагора МК^2=КО^2-МО^2
МК^2=225-144=81
МК=9
Радиус окружности, описанной около основания, равен √24 = 2√6.
Он равен проекции бокового ребра на основание и в то же время это половина диагонали квадрата в основании пирамиды.
Отсюда находим сторону а основания: а = 2*(2√6)/√2 = 4√3.
Так как угол наклона бокового ребра к плоскости основания равен 45 градусам, то находим его длину L.
L = 2√6/cos 45° = 2√6/(√2/2) = 4√3.
Теперь можно получить ответ - высота боковой грани пирамиды равна (это апофема А):
А = √(L² - (a/2)²) = √(4√3)² - (4√3/2)²) = √(48 - 12) = √36 = 6.