1) Так как угол MNO = 60°, а стороны MO=ON как радиусы, то треугольник MNO - равнобедренный и углы OMN и MNO равны друг другу (60°)
В сумме эти углы дают 120°, значит третий угол MON будет равен 180°-120° = 60°. Значит треугольник MON - разносторонний и сторона MN равна радиусу. Диаметр равен двум радиусам:
D=2R=2MN=2*5,4=10,8см
2) Угол MNR равен сумме углов MNO и ONR , то есть: 60° + 90° = 150°
3) Аналогично рассмотрим треугольник OKL , так как KL = MN , то точно так же треугольник OKL является равносторонним, а значит все его углы равны по 60° => угол OKL = углу NKL = 60°
1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности ({\displaystyle R=t}R=t), поскольку {\displaystyle 2\sin {\frac {\pi }{6}}=1}2\sin {\frac {\pi }{6}}=1.
Все углы равны 120°.
Радиус вписанной окружности равен:
{\displaystyle r={\frac {\sqrt {3}}{2}}R={\frac {\sqrt {3}}{2}}t}r={\frac {{\sqrt 3}}{2}}R={\frac {{\sqrt 3}}{2}}t
Периметр правильного шестиугольника равен:
{\displaystyle P=6R=4{\sqrt {3}}r}P=6R=4{\sqrt 3}r
Площадь правильного шестиугольника рассчитывается по формулам:
{\displaystyle S={\frac {3{\sqrt {3}}}{2}}R^{2}={\frac {3{\sqrt {3}}}{2}}t^{2}}S={\frac {3{\sqrt 3}}{2}}R^{2}={\frac {3{\sqrt 3}}{2}}t^{2}
{\displaystyle S=2{\sqrt {3}}r^{2}}S=2{\sqrt 3}r^{2}
Шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).
Правильный шестиугольник со стороной {\displaystyle {\frac {1}{\sqrt {3{\frac {1}{{\sqrt 3}}} является универсальной покрышкой, то есть всякое множество диаметра 1 можно покрыть правильным шестиугольником со стороной