Нехай дано прямокутник ABCD, BD — діагональ, DC = 10 см, ∠BDC = 60°.
Р-мо BDC:
∠BCD = 90° — як кут прямокутника, отже ΔBDC — прямий, ∠BDC = 60° — за умовою, тоді ∠DBC за теоремою про суму кутів трикутника буде дорівнювати:
∠DBC = 180°−90°−60° = 30°.
По властивості катета, який лежить напроти кута 30°, гіпотенуза трикутника буде рівна:
BD = 2*DC = 2*10 = 20 (cm)
Знайдемо інший катет за т. Піфагора:
Підставимо значення у формулу площі прямокутника:
Відповідь: Площа прямокутника рівна 100√3 см² або приблизно 173,2 см².
Расстояние от точки S до сторон трапеции равно 5 см.
Объяснение:
Расстояние от точки S до сторон трапеции - это перпендикуляры, проведенные из этой точки к сторонам. Опустим перпендикуляр SO на плоскость трапеции и соединим точку О с концами перпендикуляров от точки S до сторон. По теореме о трех перпендикулярах проекции расстояния от точки S до сторон перпендикулярны сторонам трапеции. Если наклонные (расстояния от S до сторон) равны, то равны и их проекции. Следовательно, точка S проецируется в центр вписанной в трапецию окружности, радиус которой равен половине высоты трапеции, то есть
R = 3√2 см.
Расстояние от точки S до сторон трапеции - это гипотенуза прямоугольного треугольника с катетами - √7 см и 3√2 см.
По Пифагору: L = √(7+18) = 5 cм.