Две хорды окружности АС и BD взаимно перпендикулярны.
а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.
б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины хорд АВ и CD, равен 5.
————————
а) Обозначим середины хорд АС и ВD точками К и М соответственно. . Угол Т в точке пересечения хорд - прямой (дано).
Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.
---------------
б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.
Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.
Из решения пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ. Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия. По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Две хорды окружности АС и BD взаимно перпендикулярны.
а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.
б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины хорд АВ и CD, равен 5.
————————
а) Обозначим середины хорд АС и ВD точками К и М соответственно. . Угол Т в точке пересечения хорд - прямой (дано).
Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.
---------------
б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.
Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.
Из решения пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ. Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия. По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)