Формулировка Геометрическая фигура тип утверждение Чертеж Параллелограмм Определение Свойства односторонних и противолежащих углов параллелограмма Свойство диагоналей параллелограмма Свойства сторон параллелограмма
Параллельные прямые, которые исходят из точек С, Р и К перпендикулярны к прямой С1К1. Проведем CN, NP1,C1M, ML так, что CMPN и MLK1C1 - прямоугольники. Из условия СС1 = 3 см, РР1 = 5 см. Поскольку СС1Р1N - прямоугольник (три угла равны 90 градусов), то CC1 = NP1 = 3 см. Аналогично из прямоугольника MPP1C1: MC1 = PP1 = 5 см, из прямоугольника MLK1C1: МС1 = LK1 = 5 см. CM = NP = NP1 + P1P, CM = 3 + 5 = 8 см. Рассмотрим треугольники CMP и KLP: СР = РК по условию, <MPC = <KPL как вертикальные, <CMP = <KLP = 90 градусов. Следовательно, треугольника CMP и KLP равны по стороне и двум прилежащим к ней углам. Исходя из равенства треугольников, CM = KL = 5 см. KK1 = KL + LK1. Имеем: KK1 = 8 + 5 = 13 см. ответ: 13 см.
4. Назовём медиану, проведённую из точки B, BD. Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF 1) ∠B - общий 2) ∠BAC = ∠BEF - из решения Отсюда следует, что эти треугольники подобны. Коэффициент подобия будет равен отношению BD и BO k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2 15 : EF = 3 : 2 3EF = 30 EF = 10 см
ответ: 10 см
5. Найдём AB по теореме Пифагора: AB = √(25 + 75) = √100 = 10 см Напротив угла в 30° лежит катет в два раза меньше гипотенузы. AB = 2AC ⇒ ∠ABC = 30°