1) 60° и 120°
2) в приложении
3) Достаточно двух измерений: любая сторона первого треугольника и любая сторона второго треугольника
Объяснение:
1. Пусть один из углов равен х градусов, тогда второй равен 2х градусов. Сумма двух смежных углов является 180°. Получается уравнение
х+2х=180°
3х=180°
х=180°:3
х=60° - мера меньшего угла
2х=120° - мера большего угла
2. В приложении
3.
Если же в Евклидовой геометрии сравниваем равносторонние треугольники, то достаточно сравнить две любые стороны из каждых сравниваемых треугольников. То есть достаточно сделать два измерения: любая сторона первого треугольника и любая сторона второго треугольника. Если обе эти стороны равны, то треугольники равны. Если же они не равны, то треугольники не равны.
1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300