Так как многоугольник - правильный, то все стороны и углы у этого многоугольника равны.
Сначала найдём количество сторон этого многоугольника.
Итак, угол правильного многоугольника вычисляется по формуле :
Где a - угол правильного многоугольника, n - количество сторон.
Подставим известные значения в формулу и узнаем численное значение переменной n :
Количество сторон = 10.
2) Периметр многоугольника - сумма длин всех сторон.
Можно записать формулу для нахождения периметра правильного многоугольника так :
Где P - периметр, n - количество сторон, d - длина стороны.
Нам нужно найти d :
Сторона многоугольника = 8 см.
ответ: 8 см.
АС= -12+12√2 = 12(√2-1).
2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е).
Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см.
Тогда радиус описанной окружности находим по формуле
R=abc/[4√p(p-a)(p-b)(p-c).
R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25.
3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.
Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK).
20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.