M және K нүктелері, сәйкесінше, ABCD трапециясының AB және CD бүйір қабырғаларының орталары, AD=16 см, BC=12см AD векторы=хМК векторы, СВ векторы =уМК векторы болатындай х және у сандарын табыңдар.
Поскольку иное не указано, данный конус – прямой. У прямого конуса основание высоты совпадает с центром основания.
На рисунке приложения треугольник АВС– осевое сечение конуса. ∆ АВС- равнобедренный (АВ=ВС как образующие ). АС - диаметр, О - центр основания, ВО - высота конуса.
ВО⊥АС⇒ треугольник ВОС – прямоугольный, и отрезок ОН, проведенный перпендикулярно к гипотенузе ВС, является его высотой. Прямоугольный ∆ СОВ~∆ НОВ по общему углу при вершине В ⇒
Если все прямые лежат в одной плоскости, через них можно провести только одну плоскость. В условии сказано, что плоскости проведены через каждые две из них. Совсем необязательно они должны быть перпендикулярны друг другу. Через две пересекающиеся прямые всегда можно провести одну и только одну плоскость. Или Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость. Отметим точку пересечения 0, точки на каждой прямой 1, 2, 3 соответственно Проведено три плоскости. См. рисунок.
Поскольку иное не указано, данный конус – прямой. У прямого конуса основание высоты совпадает с центром основания.
На рисунке приложения треугольник АВС– осевое сечение конуса. ∆ АВС- равнобедренный (АВ=ВС как образующие ). АС - диаметр, О - центр основания, ВО - высота конуса.
ВО⊥АС⇒ треугольник ВОС – прямоугольный, и отрезок ОН, проведенный перпендикулярно к гипотенузе ВС, является его высотой. Прямоугольный ∆ СОВ~∆ НОВ по общему углу при вершине В ⇒
∠ВСО=∠ВОН=α.
V(кон)=πR²•h/3
R=BC•cosα=n•cosα
h=BO=n•sinα
V=π•n²•cos²α•n•sinα/3=n³•cos²α•sinα/3