Уравнение окружности имеет вид :
(x - x₀)² + (y - y₀)² = R² ,
где x₀, y₀ - координаты центра окружности, R - радиус окружности
(x - 1)² + (y + 2)² = 1 ⇒ Центр окружности О(1; -2), радиус R=1
При симметрии относительно оси OY радиус и координата у не изменятся, а координата х поменяет знак
(x + 1)² + (y + 2)² = 1 ⇒ Центр окружности O₁(-1; -2), радиус R=1
При симметрии относительно оси OX радиус и координата х не изменятся, а координата у поменяет знак
(x - 1)² + (y - 2)² = 1 ⇒ Центр окружности O₂(1; 2), радиус R=1
При последовательной симметрии относительно осей ОX и OY (центральная симметрия) радиус не изменится, а обе координаты поменяют знаки
(x + 1)² + (y - 2)² = 1 ⇒ Центр окружности O₃(-1; 2), радиус R=1
По теореме Пифагора: АС = √(АВ² - ВС²)= √(20² - (4√21)²)= √(400 - 336)=√64 = 8
sinB = АС: АВ = 8:20 = 0,4