ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))
Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит:
АС/А₁С₁=ВС/В₁С₁
4/6=12/18
4*18=6*12
72=72 значит треугольники подобны
Тогда составляем пропорцию с неизвестной стороной А₁В₁:
АВ/АС=А₁В₁/А₁С₁
10/4=А₁В₁/12
А₁В₁=10*12/4=30
Задача 2
Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит:
18/288=9²/А₁В₁
А₁В₁=288*81/18=
Задача 3
Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания)
Тогда составляем пропорцию отношения сторон подобных треугольников:
ДО/ДС=ОВ/АВ
20/50=8/АВ
АВ=50*8/20=20
ответ АВ=20