Диаметр окружности, вписанной в ромб, равен высоте ромба, а радиус, естественно, половине этой высоты. Радиус вписанной в ромб окружности можно найти по формуле r=S:рS — площадь ромба, где p — его полупериметр (p=2a, где a — сторона ромба) .Как известно, одна из формул площади ромба: площадь ромба равна половине произведения его диагоналей. S=d*D:2 Одна диагональ дана в условии, она равна 60 cм. Точкой пересечения диагонали ромба делятся пополам и образуют прямоугольные треугольники с гипотенузой 50 см, одним катетом 30см, второй предстоит найти. Сделать это можно по т.Пифагора, но получился египетский треугольник с отношением сторон 3:4:5. Отсюда ясно, что второй катет равен 40 см, и вся диагональ равна 40*2=80 см Площадь ромба d*D:2=60*80:2=240 см² r=S:р=240:(50*2)=24 см
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9
АВСД ромб
угол А=30, т.О пересечение диагонал., АР высота на АВ
АО=ОР/sin15==3/0.2588=11.6
АВ=АО/cos15=11.6/0.9659=12 сторона ромба