Дано: ABCD - ромб, АВ= ВС=CD =AD. AK = 2см, P = 16см. Найти: Угол Д и угол А. Решение: Определим сторону ромба \begin{lgathered}P=4a \\ a= \frac{P}{4} = \frac{16}{4} =4\end{lgathered}P=4aa=4P=416=4 С угла А проведем высоту к стороне CD. Получаем, что треугольник AKD - прямоугольный. 1. Синус угла D - это отношение противолежащего катета к гипотенузе, тоесть: \sin D= \frac{AK}{AC} = \frac{2}{4} = \frac{1}{2}sinD=ACAK=42=21 По таблице синусов 1/2 это будет 30 градусов, Угол D = углу B = 30градусов, тогда угол А =180-30=150градусов
Дано: ABCD - ромб, АВ= ВС=CD =AD. AK = 2см, P = 16см. Найти: Угол Д и угол А. Решение: Определим сторону ромба \begin{lgathered}P=4a \\ a= \frac{P}{4} = \frac{16}{4} =4\end{lgathered}P=4aa=4P=416=4 С угла А проведем высоту к стороне CD. Получаем, что треугольник AKD - прямоугольный. 1. Синус угла D - это отношение противолежащего катета к гипотенузе, тоесть: \sin D= \frac{AK}{AC} = \frac{2}{4} = \frac{1}{2}sinD=ACAK=42=21 По таблице синусов 1/2 это будет 30 градусов, Угол D = углу B = 30градусов, тогда угол А =180-30=150градусов
Нехай кут АВО = 4х, тоді кут ОАВ = 5х. Оскільки сума гострих кутів прямокутного трикутника = 90°, то складемо рівняння :
4х + 5х = 90°
9х = 90°
х = 90° : 9
х = 10°
Отже кут АВО = 4х10 = 40°, тоді кут ОАВ = 5х10 = 50°. Кут В = 80°, бо діагональ є бісектрисою кута.
Відповідь : 40° ; 50° ; 80°.