Дан треугольник АВС. Плоскость, пересекая стороны АС и ВС треугольника АВС соответственно в точках А1 и В1, делит их в отношении АА1:А1С= ВВ1:В1С=3:4 .Найдите АВ, если А1В1=20 см
Вариант 1. Уровень А. 1. в) Одну. 2. а) MN = KN 3. в) В - середина АD 4. б) N∈MK 5. б) ∠АОМ = ∠РОА 6. а) 48° и 132° 7. в) (рисунок во вложении) 8. б) прямой 9. б) Если биссектрисы двух углов перпендикулярны, то эти углы смежные.
Уровень В. 1. 180° - 113° = 67° 2. 12,3 - 5,7 = 6,6 см 3. 6,1 : 2 = 3,05 см 4. (140° - 20°) : 2 = 60° 5. 24 : 2 = 12 см 6. 180° - (56° : 2) = 180° - 28° = 152°
Вариант 2. Уровень А. 1. в) Одну 2. в) 2 АВ = МВ 3. в) B – середина АD 4. а) С∈АВ 5. в) ∠ АОМ = ∠ КOМ 6. в) 93° и 77° 7. в) (рисунок во вложении) 8. а) острый 9. б) Если углы прямые, то они смежные
Уровень В. 1. 180° - 132° = 48° 2. 5,2 - 3,6 = 1,6 см 3. 2,8 · 2 = 5,6 см 4. 120° : 6 = 20° 5. 12 : 2 = 6 см 6. (180° - 124°) · 2 = 56° · 2 = 112°
Объяснение:1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем